Raising The

Ariff Bongso's experiments had come to the very threshold of world-changing success. Much of what he had discovered quickly became established as standard procedure. For example, his experiments reinforced what was becoming widely acknowledged: That it was a relatively simple matter to physically or chemically separate cells from blastocysts. Also, while the pluripotency of the extracted cells was never verified, the fact that the cultured cells had been kept alive through multiple divisions raised the bar for the rest of the scientific community.

The next advance was to take place on the other side of the Pacific, at the University of Wisconsin's primate research center. In 1993, Dr. James Thomson's research team had managed to successfully flush embryos from the reproductive tracts of pregnant rhesus monkeys. Within a year and a half—roughly the same time that Bongso was performing his work in Singapore, Thomson had been able to isolate stem cells from these embryos and keep them growing in a special cell culture that he had invented. Yet this was not the full extent of the success.

Thomson's team had managed to take the next step forward. They had been able to keep the cells happy and dividing—without differentiating and losing the cellular plasticity that was needed in a pluripotent stem cell. The little cell cultures had been quietly persisting for over a full year with no loss of pluripotency.

This amazing feat was announced in the late summer of 1995, in a blaze of press releases that generated . . . almost no media interest at all. The subject was abstract, and did not relate to people so much as to lab monkeys (at least to the press corps). In addition, the news on the plasticity of monkey stem cells had to compete with the much more heralded launch of Bill Gates' Windows 95 operating system, the first of the true "killer applications"

that Silicon Valley would start churning out as the dot-com days began in earnest.

The ability of the stem cell researchers to catch the public eye would drastically change in the ensuing years. What was apparent to the researchers in the field—that a monkey's embryonic development ran almost completely parallel to a human's—would soon become apparent to even the most jaded journalists.

Thomson was certain that stem cells were the key to the twin wonders of therapeutic cloning and "transplantation" medicine. Creating a steady-state source of stem cells that could be switched on to differentiate on demand would allow a doctor to replace damaged or diseased tissue with brand new, mature cells. And yet, due to the increasing debate over all sorts of related events—abortion, human cloning, and genetic testing just for starters—there were few scientists lining up for the challenge.

Thomson was practically the only person with the right know-how to push the envelope out a little further. At first, it seemed that the effort might founder from lack of funding. His application for funds had been turned down by the university, not on scientific grounds but over concerns that the research would attract controversy and negative attention like a lightning rod.

This was a legitimate concern for a public institution, which not only had to eventually answer to the taxpayers but also to alumni. Thomson himself appeared to recognize the controversy that could engulf the project. Not wishing to be subject to funding restrictions from alumni who might disagree with his work, he hadn't even applied for funds from the alumni research foundation.

But fate had a way of smiling on Thomson. With private funds provided by Geron, a newly formed biotechnology company located in California, he would be able to pursue the creation of human stem cell lines. Thomson's project was approved of by the university's health sciences board. It was a politically astute decision. The board was apparently willing to back the research and weather the controversy so long as the funding was not coming from the university, thereby allowing the institution to "keep its hands clean."

Thomson's team dove into the work as soon as funding was as sured. Internationally, the race to isolate and culture human stem cells was gathering steam. Though the national press seemed slow to catch on, for the past decade scientists in several countries had been pushing to be the first.

Aside from the national prestige of being first—not to mention the acclaim from fellow scientists around the world—the ultimate vision appeared to be less of a mirage or a far-off dream and more of a possibility. The vision was, of course, the ability to develop customized strategies for treating diseases ranging from diabetes to Parkinson's disease.

Was this article helpful?

0 0

Post a comment