References

Babu, K. S., Debowy, D. J., Ghosh, S., Hu, E. H., Harris, A., Natiello, M., and Gardner, E. P., Spike burst analysis: a tool for analysing natural prehension behaviors recorded with digital video. Soc. Neurosci. Abstr. 26, 2202, 2000.

Bovik, A., Ed. Handbook of Image and Video Processing. San Diego, CA: Academic Press, 2000.

Chapman, C. E., Tremblay, F., and Ageranioti-Belanger, S. A., Role of primary somatosensory cortex in active and passive touch. In: Wing, A. M., Haggard, P., and Flanagan, J.R., Eds. Hand and Brain. Academic Press, San Diego, CA, pp. 329, 1996.

Debowy, D. J., Babu, K. S., Hu, E. H., Ghosh, S., Harris, A., Natiello, M., and Gardner, E. P., Spike burst analysis: a tool for analysing trained prehension behaviors recorded with digital video. Soc. Neurosci. Abstr. 26, 2202, 2000.

Debowy, D., Ghosh, S., Ro, J. Y., and Gardner E. P., Comparison of neuronal firing rates in somatosensory and posterior parietal cortex during prehension. Exp. Brain Res. 137, 269, 2001.

Edin, B. B. and Abbs, J. H., Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J. Neurophysiol., 65, 657, 1991.

Edin, B. B. and Johansson, R. S., Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. Lond., 487, 243, 1995.

Fenton, A. A. and Muller, R. U., Using digital video techniques to identify correlations between behavior and the activity of single neurons. J. Neurosci. Meth.,70, 211, 1996.

Gardner, E. P., Ro, J. Y., Debowy, D., and Ghosh, S., Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension. Exp. Brain Res., 127, 329, 1999.

Hulliger, M., Nordh, E., Thelin, A. E., and Vallbo, A.B., The responses of afferent fibers from the glabrous skin of the hand during voluntary finger movements in man. J. Physiol. Lond., 291, 233, 1979.

Jeannerod, M., The timing of natural prehension movements. J. Mot. Behav., 16, 235, 1984.

Jeannerod, M., Arbib, M. A., Rizzolatti, G., and Sakata, H., Grasping objects: the cortical mechanisms of visuomotor transformation. TINS, 18, 314, 1995.

Johansson, R. S., Sensory control of dexterous manipulation in humans. In: Wing, A. M., Haggard, P., and Flanagan, J. R., Eds., Hand and Brain. Academic Press, San Diego, CA, pp. 381, 1996.

Lederman, S. J., Browse, R. A., and Klatzky, R. L., Haptic processing of spatially distributed information. Percept. Psychophys., 44, 222, 1988.

Muir, R. B. and Lemon, R. N., Corticospinal neurons with a special role in precision grip. Brain Res., 261, 312, 1983.

Picard, N. and Smith, A. M., Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J. Neurophysiol., 68, 1867, 1992.

Ro, J. Y., Debowy, D., Ghosh, S., and Gardner, E. P., Depression of neuronal firing rates in somatosensory and posterior parietal cortex during object acquisition in a prehension task. Exp. Brain Res, 135, 1, 2000.

Ro, J. Y., Debowy, D., Lu, S., Ghosh, S., and Gardner, E. P., Digital video: a tool for correlating neuronal firing patterns with hand motor behavior. J. Neurosci. Meth., 82, 215, 1998.

Roy, A. C., Paulignan, Y., Fame, A., Jouffrais, C., and Boussaoud, D., Hand kinematics during reaching and grasping in the macaque monkey. Behav. Brain Res., 117, 75, 2000.

Sakata, H., Taira, M., Murata, A., and Mine, S., Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex, 5, 429, 1995.

Salimi, I., Brochier, T., and Smith, A. M., Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. J. Neurophysiol., 81, 825, 1999.

Wannier, T. M. H., Maier, M. A., and Hepp-Reymond, M. C., Contrasting properties of monkey somatosensory and motor cortex neurons activating during the control of force in precision grip. J. Neurophysiol., 65, 572, 1991.

Westling, G. and Johansson, R. S., Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp. Brain Res., 66, 128, 1987.

Deciphering the Code — Dynamic Modulation of Neural Activity During Tactile Behavior

Was this article helpful?

0 0

Post a comment