Quantum Mind and Transactional Supercausality

Recapitulating on our ideas of transactions we note the following points:

1. Since the first ideas linking quantum uncertainty and free-will were proposed, the nonlocal space-time spanning manifestations of uncertainty have become more apparent and given rise to the concepts of quantum nonlocality and entanglement. A key example of this is the pair-splitting experiment, Fig. 13.16, in which a single quantum event releases two particles in the same wave function. If the state of either is measured, the particles' complementary spins or polarizations then become immediately correlated in such a way that an exchange of local information limited by the speed of light cannot achieve.

2. The space-time properties of quantum phenomena also have a peculiar hand-shaking potentiality, in which future can affect past as well as past affect future. In Fig. 13.5 is an illustration of the Wheeler delayed-choice experiment on a cosmic scale in which the route taken by a photon around

Fig. 13.16. (a) Pair-splitting experiment for photons. (b) Time-varying analyzers are added driven by an optical switch too fast for light to cross the apparatus. (c) The results are consistent with quantum mechanics but inconsistent with Bell's inequalities for a locally causal system. (d) The calcium transition [5]

Fig. 13.16. (a) Pair-splitting experiment for photons. (b) Time-varying analyzers are added driven by an optical switch too fast for light to cross the apparatus. (c) The results are consistent with quantum mechanics but inconsistent with Bell's inequalities for a locally causal system. (d) The calcium transition [5]

Fig. 13.17. Quantum electrodynamics: (a,b) Two Feynman diagrams in the repulsion of two electrons. In the first a single virtual photon is exchanged between two electrons, in the second the photon becomes a virtual electron-positron pair during its transit. All such diagrams are integrated together to calculate the strength of the electromagnetic force. (c) A similar diagram shows how neutron decay occurs via the W- particle of the weak nuclear force, which itself is a heavy charged photon. (d) A time-reversed electron scattering is the same as positron creation and annihilation a gravitational lens can be determined after it has already passed, by rearranging the detection apparatus at the end of its path, reinforcing the notion of future-past hand-shaking. The concept is also fully consistent with quantum field theory formulations as exemplified by Feynman diagrams, Fig. 13.17, which themselves can be time reversed, resulting for example in interconversion between positrons and electrons.

3. These paradoxes are resolved by the transactional interpretation, Fig. 13.6. In this description each contingent emitter of a quantum sends out an offer wave and each contingent absorber sends out a confirmation wave. In reduction of the wave function the interrelationship of all these together throughout space-time collapses (possibly sequentially) into a match-making pairing of real interactions between paired emitters and absorbers as in Fig. 13.6a. The decision-making process results in collapse of the wave function of many possibilities to the actual unique real quantum event. This becomes an interference between one emitter and one absorber superimposing to form the real particle traveling between. In the transactional interpretation, Sect. 13.5, the absorber, such as my eye looking at a distant star is thus as essential to the transaction as the star that long ago emitted the light. In this view of quantum mechanics there is then a sense in which any quantum emitter is implicitly aware of the future existence of the absorber by the very act of engaging the transaction.

4. The force field is explained through virtual particles (such as the photon) appearing and disappearing through uncertainty. Such particles must necessarily link an emitter and an absorber. The theory of virtual and real particles demonstrates that real and virtual particles are, in principle, indistinguishable. If we oscillate the electromagnetic field we elicit a radio broadcast. Virtual photons generating the electromagnetic field have become real ones telling us the news. If the universe emerged from a single wave function all real particles may also be entangled. Even if the universe expands forever and some quanta, such as photons, are disseminated into space, causing a permanent disparity between emitters and absorbers, the kinds of excitons we naturally associate with phase correlations in global brain dynamics are all transient excitations, both emitted and absorbed by the brain and its neurons as boundary conditions as an integral part of dynamical systems feedback.

We have discussed the idea that chaotic excitation was a primal phenomenon that occurred in the first cells, even as the metabolic pathways were becoming established. Chaotic excitation leads to a multiquantum-mode sense organ responding to external perturbations of the environment by sensitive dependence. The idea is that this sense organ then found that through the exchange of transactional hand-shaking with its own emission and absorption states, a form of quantum anticipation of its own immediate future resulted. This anticipation then proved to have significant selective advantage for the organism and thus became fixed in evolution as the sentient conscious brain, complementing computational capacity with transactional anticipation through the chaotically fractal central nervous system.

An evolutionary explanation for the role of subjective consciousness intervening in the states of the brain emerges if the brain uses unstable processes and nervous systems can access the laws of quantum nonlocality to enable a form of temporal anticipation of pivotal survival value, which would hence be strongly selected as a trait. This could affect global brain states if they are critically poised or have chaotic sensitive dependence. The hard problem then exerts a complementarity between entangled quantum states along with their corresponding contingent transactions, and subjective states, in which conscious choice becomes physical action partly through collapse of the wave function - the component that corresponds to the "free" component of will not determined by initial conditions or computational constraints. Even if the universe expands forever and some quanta such as photons are disseminated into space, the kinds of excitons we naturally associate with phase correlations in global brain dynamics are all transient excitations both emitted and absorbed by the brain and its neurons as boundary conditions.

The transactional process closely parallels known techniques of quantum computation [19] using a superposition of states as boundary condition rather than the finite number of real particles exchanged in transactions. The use by the brain of complex excitons may make it sensitive to an envelope of states spanning immediate past, present and future [62] - the anticipatory "quantum of the conscious present". We can model the evolving brain dynamic as a complementation between two processes, an ordered process of computation based on the "initial" conditions forming a skeleton defining the ordered context and a chaotic, uncertain complement. It is thus possible for the brain to utilize all the prevailing contexts in coming to a decision and yet involve some free choice in the outcome. Such excitons might have restricted interactions that would isolate them from quantum decoherence effects [92] as illustrated by quantum coherence imaging [82, 88] and would also serve to ensure transactional hand-shaking occurred. The ordered aspect of the dynamic would be a function of initial conditions but the complementary chaotic, uncertain regime would involve inflated future states through trans-actional hand-shaking. The uncertainty in the transition from chaos to order representing, perception, or cognitive "eureka", corresponds to an inflated reduction of the wave function. The physical model of historicity and the subjective experience of conscious intentionality will thus coincide.

The "binding problem" - how sensory experiences being processed in parallel in different parts of the cortex are bound together to give the conscious expression we associate with our integrated perception of the world - has no direct solution in terms of being hard-wired to some collection point - the ultimate seat of consciousness. Every indication is that consciousness is distributed and bound together by nonlinear resonances in the brain, which is exactly what we would expect in a situation self-resonances were being used as part of a transactionally supercausal solution to the perception-cognition dilemma.

The problem of consciousness is consummated by the question of freewill. What is the function of subjective consciousness if it is only brain states and not the subjective aspect that effect our future physical states? Put in reverse, if subjective consciousness has any evolutionary advantage then it can manifest itself only by perturbing in some way the physical causality of brain processes. This is the problem of intent. Everyone who sets foot into the world invests in the principal of personal autonomy, that we have subjective control over our physical circumstances. All questions of legal responsibility hinge on it. Yet this implies mind affecting matter, something that mechanistic science struggles to deny. In the transactional model of perception, intention, and will, subjective consciousness enters into the picture as the inner complement of the quantum nonlocal hand-shaking process that violates the causality of initial or former states determining future states, which we associate with the Newtonian universe and temporal determinism. This occurs as a consequence of special relativity and the fact that the boundary conditions of collapse include future contingent absorbing states.

Since the quantum transaction is a fundamental interpretation of all quanta, it is general to all quantum interaction. Its manifestation in resolving the fundamental questions of interaction with the physical world thus adopts a cosmological dimension, in which the sentient conscious brain becomes a central avenue for the expression of subjectivity through quantum nonlocality in space-time.

At the same time, the brain has been evolving towards a type of universality expressed in flexible algorithms for multisense processing and modeling, which experiencers of synaesthesia can witness are capable of coexisting in one multisense perception mode. A huge cosmological question is now raised. Is evolution simply adventitious accident, or is it part of the way the quantum universe explores its own phase space of possibilities in reaching towards a universal expression of the quantum entangled physical universe? In a quantum universe we have the dilemma of the many-universes problem. How does reduction of the wave packet result in one history or another occurring?

Transactional supercausality explains the cat paradox, Fig. 13.3, by interlacing contingent emitters and absorbers across space-time in a hand-shaking, to form a complex subquantum system whose outcomes are naturally distributed according to the wave amplitude because they are the result of bifurcations of offer and confirmation waves dependent on their relative amplitudes. Reduction of the wave function corresponds to a particular matching of emitter and absorber for one exchanged wave-particle. Determining which part of the wave function a particle appears in is converted into the combinatorial one of which emitter and absorber pair are matched up. One can model the transition from many-to-many to one-on-one in terms of a nonlinearity in which pairs become "mated" in sequence. However, this process cannot be resolved causally, based on initial conditions because of the hand-shaking, leaving a loophole that only the "anticipatory" mind and not computation per se can resolve. The many probability multiverses thus become resolved from superimposed multiverse superabundance by hand-shaking across space-time sequentially, reducing the packet of all possible emitter-absorber connections to a sequence of "happy marriages" as illustrated in Fig. 13.6a.

The transactional principle also teaches us that modeling the interior domain of the quantum entanglement, even if it can be understood as an interactive sequence of emitter-absorber reductions, will only give indeterminate predictions if only past boundary conditions are defined. It also shows us how symmetric hand-shaking time occurring in reduction fits with the sequential arrow of time defined by real, retarded, positive energy particles. The universe, thus becomes experientially historical through the uncertainty of free choice and perception itself in distinguishing the perceived from the uncertain background. Napoleon does not win the Battle of Waterloo, but Britain wins Trafalgar, despite the feigned uncertainty of Nelson's blind eye. The same goes for all the hopeful monsters of evolution that never came to be. Quantum nonlocality thus appears to have a method through space-time hand-shaking of determining which one of the multiverses hovering in the virtual continuum will actually manifest itself. The role of consciousness as a cosmological process appears to mediate effectively between the world of the cosmic subjective, represented in physics as quantum nonlocality, with the uniqueness of historicity, which never fully converges to the statistical interpretation of the cosmic wave function, because each change leads to another, throughout cosmic epochs.

This leads to a deep question shared by all human cultural traditions from the dawning of shamanism, through Vedanta to the Tao and even in the Judeo-Christian prophetic tradition, that mental states of awareness and subsequent physical happenings are interrelated by an anticipatory principle. If historicity is interactive with both the quantum realm and the existential condition, what are the consequences for science, society and cosmology itself? The description of reality here suggests that the physical universe has a complement - the subjectively conscious existential condition. Such a view both of the cosmological role of evolution to sentience and the brain as an interface between the cosmic subjective and the physical universe puts us right back into the center of the cosmic cyclone in a way that Copernicus, Galileo, Descartes, Leonardo and Albert Einstein would have all appreciated.

Consciousness is then not just a globally modulated functional monitor of attention subject helplessly to the physical states of the brain, but a complementary aspect to physical reality, interacting with space-time through uncertainty and quantum entanglement in a manner anticipated by Taoist [89] and Jungian ideas of synchronicity [47]. The same considerations apply to the use of chance oracles such as the I Ching, and the Hebrew Urim and Thummim, both of which use chaotic processes to divine an uncertain outcome. It is also possible to model hunches or premonitions as perceptions of partially collapsed contingent transactional ensembles, making certain perceived outcomes more likely than they would have been had no the perception occurred. The anthropic cosmological principle [10] declares that possible universes are constrained by the existence of observers. In the weakest terms the anthropic principle ensures laws of nature compatible with the complexity of life. In stronger forms the existential nature of the universe is partially dependent on the existence of conscious observers. In transactional supercausal forms, conscious perception is resulting in the collapse of multiverses to the historical physical universe we experience. These observations illustrate anthropic aspects of the subject-object complementary hard problem model.

Although subjective consciousness, by necessity, reflects the constructive model of reality the brain adopts in its sensory processing and associative areas, this does not fully explain the subjective aspect of conscious experience. Conscious experience is our only direct avenue to existence. It underlies and is a necessary foundation for all our access to the physical world. Without the consensuality of our collective subjective conscious experiences as observers, it remains uncertain that the physical world would have an actual existence. It is only through stabilities of subjective conscious experience that we come to infer the objective physical world model of science as an indirect consequence. For this reason, subjective consciousness may be too fundamental a property to be explained, except in terms of fundamental physical principles, as a complementary manifestation to quantum nonlocality, which directly manifests the principle of choice in free-will in generating history.

Was this article helpful?

0 0
Improving Your Marriage To Newlyweds Again

Improving Your Marriage To Newlyweds Again

Is Your Marriage Less Than What You Expected It To Be? Have You Ever Wished You Could Feel The Way You Did When You Were Newlyweds? Dont Worry, Were Here To Help! You Can Bring Your Marriage Back To Newlyweds Again! Just By Simply Reading This Easy Step-By-Step E-Book That All Married Couples Should Have

Get My Free Ebook

Post a comment