The Big Heart Disease Lie

Alternative Treatment for Cardiovascular Disease

Get Instant Access

[1] Cao Y, Hong A, Schulten H, Post MJ. Update on therapeutic neovascularization. Cardiovasc Res 2005;65:639-48.

[2] Markkanen JE, Rissanen TT, Kivela A, Yla-Herttuala S. Growth factor-induced therapeutic angio-genesis and arteriogenesis in the heart-gene therapy. Cardiovasc Res 2005;65:656-64.

[3] Vale PR, Losordo DW, Milliken CE et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circ 2001;103:2138-43.

[4] Raake P, von Degenfeld G, Hinkel R et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 2004;44:1124-9.

[5] von LM. Clinical anatomy of cardiac veins, Vv. cardiacae. Surg Radiol Anat 1987;9:159-68.

[6] Boekstegers P, Giehrl W, Degenfeld Gv, Steinbeck G. Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal angioplasty. J Am Coll Cardiol 1998;31:1525-33.

[7] Oh BH, Volpini M, Kambayashi M et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circ 1992;86:1265-79.

[8] Meerbaum S, Lang TW, Osher JV et al. Diastolic retroperfusion of acutely ischemic myocardium. Am J Cardiol 1976;37:588-98.

[9] Mohl W, Glogar DH, Mayr H et al. Reduction of infarct size induced by pressure-controlled intermittent coronary sinus occlusion. Am J Cardiol 1984;53:923-8.

[10] Costantini C, Sampaolesi A, Serra CM et al. Coronary venous retroperfusion support during high risk angioplasty in patients with unstable angina: preliminary experience. J Am Coll Cardiol 1991;18:283-92.

[11] Kar S, Drury JK, Hajduczki I et al. Synchronized coronary venous retroperfusion for support and salvage of ischemic myocardium during elective and failed angioplasty. J Am Coll Cardiol 1991;18:271-82.

[12] O'Byrne GT, Nienaber CA, Miyazaki A et al. Positron emission tomography demonstrates that coronary sinus retroperfusion can restore regional myocardial perfusion and preserve metabolism. J Am Coll Cardiol 1991;18:257-70.

[13] Boekstegers P, Diebold J, Weiss C. Selective ECG synchronised suction and retroinfusion of coroanry veins: first results of studies in acute myocardial ischemia in dogs. Cardiovasc Res 1990;24:456-64.

[14] Boekstegers P, Peter W, Degenfeld Gv et al. Preservation of regional myocardial function and myocardial oxygen tension during acute ischemia in pigs: Comparison of selective synchronized suction and retroinfusion of coronary veins to synchronized coronary venous retroperfusion. J Am Coll Cardiol 1994;23:459-69.

Degenfeld Gv, Giehrl W, Boekstegers P. Targeting of dobutamine to ischemic myocardium without systemic effects by selective suction and pressure-regulated retroinfusion. Cardiovasc Res 1997;35:233-40.

Pohl T, Giehrl W, Reichart B et al. Retroinfusion-supported stenting in high-risk patients for percutaneous intervention and bypass surgery: results of the prospective randomized myoprotect I study. Catheter Cardiovasc Interv 2004;62:323-30.

Boekstegers P, von Degenfeld G, Giehrl W et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 2000;7:232-40.

Hatori N, Sjoquist PO, Regardh C, Ryden L. Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Ischemic myocardial concentrations in the left circumflex coronary arterial area using metoprolol as a tracer. Cardiovasc Drugs Ther 1991;5:1005-10.

Ryden L, Tadokoro H, Sjoquist PO et al. Pharmacokinetic analysis of coronary venous retroin-fusion: a comparison with anterograde coronary artery drug administration using metoprolol as a tracer. J Am Coll Cardiol 1991;18:603-12.

Katircioglu SF, Iscan HZ, Ulus T, Saritas Z. Myocardial preservation in acute coronary artery occlusion with coronary sinus retroperfusion and carnitine. J Cardiovasc Surg (Torino) 2000;41:45-50. Karagueuzian HS, Ohta M, Drury JK et al. Coronary venous retroinfusion of procainamide: a new approach for the management of spontaneous and inducible sustained ventricular tachycardia during myocardial infarction. J Am Coll Cardiol 1986;7:551-63.

Miyazaki A, Hatori N, Tadokoro H, Ryden L, Corday E, Drury J. More rapid thrombolysis with coronary venous retroinfusion of streptokinase compared with intravenous administration. An experimental study in canines. Eur Heart J 1990;11:936-44.

Miyazaki A, Tadokoro H, Drury JK, Ryden L, Haendchen RV, Corday E. Retrograde coronary venous administration of recombinant tissue-type plasminogen activator: a unique and effective approach to coronary artery thrombolysis. J Am Coll Cardiol 1991;18:613-20. Hatori N, Miyazaki A, Tadokoro H et al. Beneficial effects of coronary venous retroinfusion of superoxide dismutase and catalase on reperfusion arrhythmias, myocardial function, and infarct size in dogs. J Cardiovasc Pharmacol 1989;14:396-404.

Kupatt C, Hinkel R, Horstkotte J et al. Selective Retroinfusion of GSH and Cariporide Attenuates Myocardial Ischemia-Reperfusion Injury in a Preclinical Pig Model. Cardiovasc Res 2004; 61: 530-7.

Kupatt C, Wichels R, Deiss M et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Ther 2002;9:518-26.

Kupatt C, Hinkel R, Vachenauer R et al. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 2003;17:705-7.

Kupatt C, Dessy C, Hinkel R et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphory-lation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004;24:1435-41. Feldman LJ, Steg G. Optimal techniques for arterial gene transfer. Cardiovasc Res 1997;35: 391-404.

Steg PG, Feldman LJ, Scoazec JY et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circ 1994;90:1648-56. Lamping KG, Rios CD, Chun JA, Ooboshi H, Davidson BL, Heistad DD. Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 1997;272:H310-H317. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999;22:I23-I29. Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH. Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circ 1997;96:400-3.

Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circ 1997;95:423-9.

[35] Rothmann T, Katus HA, Hartong R, Perricaudet M, Franz WM. Heart muscle-specific gene expression using replication defective recombinant adenovirus. Gene Ther 1996;3: 919-26.

[36] French BA, Mazur W, Ali NM et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circ 1994;90:2402-13.

[37] French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circ 1994;90:2414-24.

[38] Fuchs S, Baffour R, Zhou YF et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726-32.

[39] Kornowski R, Fuchs S, Leon MB, Epstein SE. Delivery Strategies to Achieve Therapeutic Myocardial Angiogenesis. Circ 2000;101:454-8.

[40] Kornowski R, Leon MB, Fuchs S et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000;35:1031-9.

[41] Losordo DW, Vale PR, Hendel RC et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circ 2002;105:2012-8.

[42] Giordano FJ. Retrograde coronary perfusion: a superior route to deliver therapeutics to the heart?*. J Am Coll Cardiol 2003;42:1129-31.

[43] Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circ 1998;97:645-50.

[44] Battler A, Scheinowitz M, Bor A et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993;22:2001-6.

[45] Unger EF, Banai S, Shou M et al. A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res 1993;27:785-91.

[46] Lopez JJ, Laham RJ, Stamler A et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998;40:272-81.

[47] Simons M, Bonow RO, Chronos NA et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circ 2000;102:E73-E86.

[48] Mack CA, Patel SR, Schwarz EA et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168-76; discus.

[49] Giordano FJ, Ping P, McKirnan MD et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534-9.

[50] Magovern CJ, Mack CA, Zhang J, Rosengart TK, Isom OW, Crystal RG. Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 1997;8:215-27.

[51] Muhlhauser J, Merrill MJ, Pili R et al. VEGF165 Expressed by a Replication-Deficient Recombinant Adenovirus Vector Induces Angiogenesis In Vivo. Circ Res 1995;77:1077-86.

[52] Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694-701.

[53] Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 1995;73:333-46.

[54] Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931-4.

[55] Fearon WF, Ikeno F, Bailey LR et al. Evaluation of high-pressure retrograde coronary venous delivery of FGF-2 protein. Catheter Cardiovasc Interv 2004;61:422-8.

von Degenfeld G, Raake P, Kupatt C et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003;42:1120-8. Kupatt C, Hinkel R, von Bruehl ML et al. Endothelial Nitric Oxide Synthase Overexpression Provides a Functionally Relevant Angiogenic Switch in Hibernating Pig Myocardium. J Am Coll Cardiol 2006;in press.

Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45-6.

Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circ 2002;106:1913-8. Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-21.

Lunde K, Solheim S, Aakhus S et al. Intracoronary Injection of Mononuclear Bone Marrow Cells in Acute Myocardial Infarction. New Engl J Med 2006;355:1199-209.

Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circ 2006;113:1287-94. Kawamoto A, Gwon H-C, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circ 2001;103:634-7.

Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circ 2004;109:1543-9.

Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678-85.

Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370-6.

Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625-37.

Sbaa E, DeWever J, Martinive P et al. Caveolin Plays a Central Role in Endothelial Progenitor

Cell Mobilization and Homing in SDF-1-Driven Postischemic Vasculogenesis. Circ Res 2006;


De Falco E, Porcelli D, Torella AR et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004;2003-12.

Qin G, Ii M, Silver M et al. Functional disruption of {alpha}4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J Exp Med


Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G. Role of L-Selectin in the Vascular Homing of Peripheral Blood-Derived Endothelial Progenitor Cells. J Immunol 2004;173:5268-74.

Chavakis E, Aicher A, Heeschen C et al. Role of {beta}2-integrins for homing and neovascular-

ization capacity of endothelial progenitor cells. J Exp Med 2005;201:63-72.

Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998;125:1457-68.

Kupatt C, Horstkotte J, Vlastos GA et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 2005;04-3282fje.

Kupatt C, Hinkel R, Lamparter M et al. Retroinfusion of Embryonic Endothelial Progenitor Cells Attenuates Ischemia-Reperfusion Injury in Pigs: Role of Phosphatidylinositol 3-Kinase/AKT Kinase. Circ 2005;112:I-117.

Was this article helpful?

0 0
Your Heart and Nutrition

Your Heart and Nutrition

Prevention is better than a cure. Learn how to cherish your heart by taking the necessary means to keep it pumping healthily and steadily through your life.

Get My Free Ebook

Post a comment