References

1 Privalov, P. L. and Potekhin, S. A.: Scanning microcalorimetry in studying temperature-induced changes in proteins, Methods. Enzymol., 131 (1986) 4-51.

2 Shnyrov, V. L., Sanchez-Ruiz, J. M., Boiko, B. N., Zhadan, G. G. and Permyakov, E. A.: Application of scanning microcalorimetry in biophysics and biochemistry, Thermochim. Acta, 302 (1997) 165-180.

3 Privalov, P. L.: Stability of proteins. Proteins which do not present a single cooperative system, Adv. Protein. Chem., 35 (1982) 1-104.

4 Sturtevant, J. M.: Biochemical applications of differential scanning calorimetry, Annu. Rev. Phys. Chem., 38 (1987) 463-488.

5 Hodge, T. and Cope, M. J. T. V.: A myosin family tree, J. Cell Sci., 113 (2000) 3353-3354.

6 Cope, M. J. T. V., Whisstock, J., Rayment, I. and Kendrick-Jones, J. K.: Conservation within the myosin motor domain: implications for structure and function, Structure,

7 Cheney, R. E. and Mooseker, M. S.: Unconventional myosins, Curr. Opin. Cell Biol., 4 (1992) 27-35.

8 Sellers, J. S., Goodson, H. V. and Wang, F.: A myosin family reunion, J. Muscle Res. Cell Motil., 17 (1996) 7-22.

9 Harrington, W. F.: On the origin of the contractile force in skeletal muscle, Proc. Natl. Acad. Sci. USA, 76 (1979) 5066-5070.

10 Potekhin, S. A., Trapkov, V. A. and Privalov, P. L.: Stages in the thermal denaturation of spiral fragments of myosin, Biofizika, 24 (1979) 46-50.

II Shnyrov, V. L., Vedenkina, N. S., Ostrovsky, A. V., Permyakov, E. A., Golitsina, N. L. and Levitsky, D. I.: Study of thermal denaturation of the rod part of myosin molecule by microcalorimetry and intrinsic fluorescence methods, Biofizika, 35 (1990) 415-420.

12 Lopez-Lacomba, J. L., Guzman, M., Cortijo, M., Mateo, P. L., Aguirre, R., Harvey, S. C. and Cheung, H. C.: Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2, Biopolymers, 28 (1989) 2143-2159.

13 Bertazzon, A. and Tsong, T. Y.: Study of effects of pH on the stability of domains in myosin rod by high-resolution differential scanning calorimetry, Biochemistry,

29 (1990) 6453-6459.

14 Nakaya, M., Watabe, S. and Ooi, T.: Differences in the thermal stability of acclimation temperature-associated types of carp myosin and its rods on differential scanning calorimetry, Biochemistry, 34 (1995) 3114-3120.

15 Swenson, C. A. and Ritchie, P. A.: Conformational transitions in the subfragment-2 region of myosin, Biochemistry, 19 (1980) 5371-5375.

16 Cross, R. A., Bardsley, R. G., Ledward, D. A., Small, J. V. and Sobieszek, A.: Conformational stability of the myosin rod, Eur. J. Biochem., 145 (1984) 305-310.

17 Bertazzon, A. and Tsong, T. Y.: Effects of ions and pH on the thermal stability of thin and thick filaments of skeletal muscle: high-sensitivity differential scanning calorimetric study, Biochemistry, 29 (1990) 6447-6452.

18 Ueno, H. and Harrington, W. F.: Cross-bridge movement and the conformational state of the myosin hinge in skeletal muscle, J.Mol. Biol., 149 (1981) 619-640.

19 Reisler, E. and Liu, J.: Conformational changes in the myosin subfragment-2. Effect of pH on synthetic rod filaments, J. Mol. Biol., 157 (1982) 659-669.

20 Zolkiewski, M., Redowicz, M. J., Korn, E. D. and Ginsburg, A.: Thermal unfolding of Acanthamoeba myosin II and skeletal muscle myosin, Biophys. Chem., 59 (1996) 365-371.

21 Zolkiewski, M., Redowicz, M. J., Korn, E. D., Hammer J. A. III, and Ginsburg, A.: Two-state thermal unfolding of a long dimeric coiled-coil: the Acanthamoeba myosin II rod, Biochemistry, 36 (1997) 7876-7883.

22 Toyoshima, Y. Y., Kron, S. J., McNully, E. M., Niebling, K. R., Toyoshima, C. and Spudich, J. A.: Myosin subfragment-1 is sufficient to move actin filaments in vitro, Nature,

23 Johnson, K. A. and Taylor, E. W.: Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism, Biochemistry, 17 (1979) 3432-3442.

24 Goodno, C. C.: Myosin active site trapping with vanadate ion, Meth. Enzymol., 85 (1982) 116-123.

25 Phan, B. C. and Reisler, E.: Inhibition of myosin ATPase by berillium fluoride, Biochemistry, 31 (1992) 4787-4793.

26 Werber, M. M., Peyser, Y. M. and Muhlrad, A.: Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes, Biochemistry, 31 (1992) 7190-7197.

27 Gopal, D. and Burke, M.: Formation of stable inhibitory complexes of myosin subfragment 1 using fluoroscandium anion, J. Biol. Chem., 270 (1995) 19282-19286.

28 Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. and Rayment, I.: Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction, Biophys. J., 68 (1995) 19s-28s.

29 Ponomarev, M. A., Timofeev, V. P. and Levitsky, D. I.: The difference between ADP-beryllium fluoride and ADP-aluminum fluoride complexes of the spin-labeled myosin subfragment 1, FEBSLett., 371 (1995) 261-263.

30 Shriver, J. M. and Kamath, U.: Differential scanning calorimetry of the unfolding of myosin subfragment 1, subfragment 2, and heavy meromyosin, Biochemistry, 29 (1990) 2556-2564.

31 Khvorov, N. V., Levitsky, D. I., Bukatina, A. E., Shnyrov, V. L. and Poglazov, B. F.: Calorimetric evidence for two conformational states ofthe complex ofmyosin subfragment 1 with nucleotides, Doklady Akad. Nauk SSSR, 315 (1990) 745-748.

32 Lorinczy, D. and Belagyi, J.: Effects of nucleotide on skeletal muscle myosin unfolding in myofibrils by DSC, Biophys. Biochem. Res. Commun., 217 (1995) 592-598.

33 Lorinczy, D. and Belagyi, J.: Nucleotide binding induces global and local structural changes of myosin head in muscle fibers, Eur. J. Biochem., 268 (2001) 5970-5976.

34 Levitsky, D. I., Shnyrov, V. L., Khvorov, N. V., Bukatina, A. E., Vedenkina, N. S., Permyakov, E. A., Nikolaeva, O. P. and Poglazov, B. F.: Effects of nucleotide binding on thermal transitions and domain structure ofmyosin subfragment 1, Eur. J. Biochem., 209 (1992) 829-835.

35 Bobkov, A. A., Khvorov, N. V., Golitsina, N. L. and Levitsky, D. I.: Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride, FEBS Lett., 332 (1993) 64-66.

36 Levitsky, D. I., Bobkov, A. A., Golitsina, N. L., Nikolaeva, O. P., Pavlov, D. A. and Poglazov, B. F.: Calorimetric studies on the stable complexes of myosin ubfragment 1 with ADP and phosphate analogues, Biofizika, 41 (1996) 64-72.

37 Levitsky, D. I., Nikolaeva, O. P., Orlov, V. N., Pavlov, D. A., Ponomarev, M. A. and Rostkova, E. V.: Differential scanning calorimetric studies on myosin and actin, Biochemistry (Moscow), 63 (1998) 322-333.

38 Bobkov, A. A. and Levitsky, D. I.: Differential scanning calorimetric study of the complexes of myosin subfragment 1 with nucleoside diphosphates and vanadate or beryllium fluoride, Biochemistry, 34 (1995) 9708-9713.

39 Gopal, D., Bobkov, A. A., Schwonek, J. P., Sanders, C. R., Ikebe, M., Levitsky, D. I. and Burke, M.: Structural basis of actomyosin chemo-mechanical transduction by non-nucleoside triphosphate analogues, Biochemistry, 34 (1995) 12178-12184.

40 Gopal, D., Pavlov, D. A., Levitsky, D. I., Ikebe, M. and Burke, M.: Chemomechanical transducion in the actomyosin molecular motor by 2',3'-dideoxydidehydro-ATP and characterization of its interaction with myosin subfragment 1 in the presence and absence of actin, Biochemistry, 35 (1996) 10149-10157.

41 Levitsky, D. I., Ponomarev, M. A., Geeves, M. A., Shnyrov, V. L. and Manstein, D. J.: Differential scanning calorimetric study ofthe thermal unfolding ofthe motor domain fragments of Dictyostelium discoideum myosin II, Eur. J. Biochem., 251 (1998) 275-280.

42 Pavlov, D. A., Sobieszek, A. and Levitsky, D. I. Calorimetric studies of the thermal unfolding of smooth muscle myosin fragments and their complexes with ADP and phosphate analogs, Bio chem is try (Mos cow), 63 (1998) 952-962.

43 Pavlov, D. A., Bobkov, A. A., Nikolaeva, O. P., Magretova, N. N., Dedova, I. V. and Levitsky, D. I.: Thermal denaturation of myosin subfragment 1 modified at residue Lys-83 and its changes induced by nucleotide binding, Biochemistry (Moscow), 60 (1995) 835-842.

44 Golitsina, N. L., Bobkov, A. A., Dedova, I. V., Pavlov, D. A., Nikolaeva, O. P., Orlov, V. N. and Levitsky, D. I.: Differential scanning calorimetric study of the complexes of modified myosin subfragment 1 with ADP and vanadate or beryllium fluoride, J. Muscle Res. Cell Motil, 17 (1996) 475-485.

45 Levitsky, D. I., Khvorov, N. V., Shnyrov, V. L., Vedenkina, N. S., Permyakov, E. A. and Poglazov, B. F.: Domain structure of myosin subframent-1. Selective denaturation of the 50 kDa segment, FEBS Lett., 264 (1990) 176-178.

46 Levitsky, D. I., Nikolaeva, O. P., Vedenkina, N. S., Shnyrov, V. L., Golitsina, N. L., Khvorov, N. V., Permyakov, E. A. and Poglazov, B. F.: The effect of alkali light chains on the thermal stability of myosin subfragment 1, Biomedical Science, 2 (1991) 140-146.

47 Golitsina, N. L., Shnyrov, V. L. and Levitsky, D. I.: Thermal denaturation of the alkali light chain-20 kDa fragment complex obtained from myosin subfragment 1, FEBS Lett.,

48 Levitsky, D. I.: Domain Structure of the Myosin Head. In Soviet Sci. Rev. - Physico-Chem. Biol., (Skulachev, V. P., ed), v. 12, Pt. 1, Harwood Acad. Publ. GmbH (1994) pp. 1-53.

49 Levitsky, D. I.: The structure of the myosin head, Biokhimiya, 56 (1991) 1539-1566.

50 Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G. and Holden, H. M.: Three-dimansional structure of myosin subfragment 1: a molecular motor, Science, 261 (1993) 50-58.

51 Zubov, E O. and Levitsky, D. I.: Tight coupling between the motor domain and the regulatory domain of the myosin head complexed with ADP and phospahate analogues, J. Muscle Res.CellMotil., 23 (2002) 15.

52 Houdusse, A., Szent-Gyorgyi, A. G. and Cohen, C.: Three conformational states of scallop myosin S1, Proc. Natl. Acad. Sci. USA, 97 (2000) 11238-11243.

53 Brandts, J. F. and Lin, L.-N.: Study of strong to ultratight protein interactions using differential scanning calorimetry, Biochemistry, 29 (1990) 6927-6940.

54 Nikolaeva, O. P., Orlov, V. N., Dedova, I. V., Drachev, V. A. and Levitsky, D. I.: Interaction of myosin subfragment 1 with F-actin studied by differential scanning calorimetry, Biochem. Mol. Biol. Internal, 40 (1996) 653-661.

55 Ponomarev, M. A., Furch, M., Levitsky, D. I. and Manstein, D. J.: Charge changes in loop 2 affect the thermal unfolding of the myosin motor domain bound to F-actin, Biochemistry,

39 (2000) 4527-4532.

56 Chalovich, J. M., Greene, L. E. and Eisenberg, E.: Crosslinked myosin subfragment 1: a stable analogue of the subfragment-1 ATP complex, Proc. Natl. Acad. Sci. USA,

80 (1983) 4909-4913.

57 Xie, L. and Schoenberg, M.: Binding of SH-SH2-modified myosin subfragment-1 to actin, Biochemistry, 37 (1998) 8048-8053.

58 Kaspieva, O. V., Nikolaeva, O. P., Orlov, V. N., Ponomarev, M. A. and Levitsky, D. I.: Changes in the thermal unfolding ofp-phenylenedimaleimide-modified myosin subfragment 1 induced by its "weak" binding to F-actin, FEBS Lett., 489 (2001) 144-148.

59 Bobkov, A. A. and Reisler, E.: Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? Biophys. J., 79 (2000) 460-467.

60 Levitsky, D. I., Shakirova, L. I., Mikhailova, V. V., Siletskaya, E. I. and Timofeev, V. P.: Nucleotide-induced and actin-induced structural changes in myosin subfragment 1 modified at both SH1 and SH2 groups, Abstracts of XXXEuropean Muscle Conference, (Pavia, Italy, 2001) 85.

61 Tsiavaliaris, G., Fujita-Becker, S., Batra, R., Levitsky, D. I., Kull, F. J., Geeves, M. A. and Manstein, D. J.: Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium, EMBOReports, 3 (2002) 1099-1105.

62 Ponomarev, M., Furch, M., Knetsch, M., Manstein, D. and Levitsky, D.: Changes in loop 2 affect the thermal unfolding of myosin head fragments while complexed to F-actin, J. Muscle Res.Cell Motil., 20 (1999) 72.

63 Nikolaeva, O. P., Orlov, V. N., Bobkov, A. A. and Levitsky, D. I.: Differential scanning calorimetric study of myosin subfragment 1 with tryptic cleavage at the N-terminal region of the heavy chain, Eur. J. Biochem., 269 (2002) 5678-5688.

64 Tatunashvili, L. V. and Privalov, P. L.: Calorimetric investigation of G-actin denaturation, Biofizika, 29 (1984) 583-585.

65 Bertazzon, A., Tian, G. H., Lamblin, A. and Tsong, T. Y.: Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium, Biochemistry, 29 (1990) 291-298.

66 Le Bihan, T. and Gicquaud, C.: Kinetic study of the thermal denaturation of G-actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy, Biochem. Biophys. Res. Commun., 194 (1993) 1065-1073.

67 Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C.: Atomic structure of the actin-Dnase I complex, Nature, 347 (1990) 37-44.

68 Lorinczy, D., Konczol, F., Gaszner, B. and Belagyi, J.: Structural stability of actin filaments as studied by DSC and EPR, Thermochim. Acta, 322 (1998) 95-100.

69 Nikolaeva, O. P., Dedova, I. V., Khvorova, I. S. and Levitsky, D. I.: Interaction of F-actin with phosphate analogues studied by differential scanning calorimetry, FEBSLett., 351 (1994) 15-18.

70 Le Bihan, T. and Gicquaud, C.: Stabilization of actin by phalloidin: a differential scanning calorimetric study, Biochem. Biophys. Res. Commun., 181 (1991) 542-547.

71 Combeau, C. and Carlier, M.-F.: Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF3- and AlF4-, J. Biol. Chem.,

263 (1988) 17429-17436.

72 Orlova, A. and Egelman, E. H.: Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis, J.Mol. Biol., 232 (1993) 334-341.

73 Muhlrad, A., Cheung, P., Phan, B. C., Miller, C. and Reisler, E.: Dynamic properties of actin. Structural changes induced by beryllium fluoride, J. Biol. Chem., 269 (1994) 11852-11858.

74 Bombardier, H., Wong, P. and Gicquaud, C.: Effects of nucleotides on the denaturation of F-actin: a differential scanning calorimetry and FTIR spectroscopy study, Biochem. Biophys. Res. Commun., 236 (1997) 798-803.

75 Sanchez-Ruiz, J. M.: Theretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J., 61 (1992) 921-935.

76 Kurganov, B. I., Kornilaev, B. A., Chebotareva, N. A., Malikov, V. Ph., Orlov, V. N., Lyubarev, A. E. and Livanova, N. B.: Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b, Biochemistry, 39 (2000) 13144-13152.

77 dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A. and Nosworthy, N. J.: Actin binding proteins and regulation of cytoskeleton microfilaments, Physiol. Rev., 83 (2003) 433-473.

78 Levitsky, D. I., Rostkova, E. V., Orlov, V. N., Nikolaeva, O. P., Moiseeva, L. N., Teplova, M. V. and Gusev, N. B.: Complexes of smooth muscle tropomyosin with F-actin studied by differential scanning calorimetry, Eur. J.Biochem., 267 (2000) 1869-1877.

79 Kremneva, E. V., Nikolaeva, O. P., Gusev, N. B. and Levitsky, D. I.: Effects of troponin on the thermal unfolding of actin-bound tropomyosin, Biochemistry (Moscow),

80 Nikolaeva, O. P., Dedova, I. V., Mikhailova, V. V. and Levitsky, D. I.: Effects of cofilin on the thermal unfolding of actin, J. Muscle Res. Cell Motil., 23 (2002) 24-25.

81 Gicquaud, C.: Actin conformation is drastically altered by direct interaction with membrane lipids: a differential scanning calorimetry study, Biochemistry, 32 (1993) 11873-11877.

82 Potekhin, S. A. and Privalov, P. L.: Cooperative blocks in tropomyosin, J. Mol. Biol., 159 (1982) 519-535.

83 Sturtevant, J. M., Holtzer, M. E. and Holtzer, A.: A scanning calorimetric study of the thermally induced unfolding of various forms of tropomyosin, Biopolymers, 31 (1991) 489-495.

84 O'Brien, R., Sturtevant, J. M., Wrabl, J., Holtzer, M. E. and Holtzer, A.: A scanning calorimetric study of unfolding equilibria in homodimeric chicken gizzard tropomyosin, Biophys. J., 70 (1996) 2403-2407.

85 Orlov, V. N., Rostkova, E. V., Nikolaeva, O. P., Drachev, V. A. Gusev, N. B. and Levitsky, D. I.: Thermally induced chain exchange of smooth muscle tropomyosin dimers studied by differential scanning calorimetry, FEBSLett, 433 (1998) 241-244.

86 Krishnan, K. S., Brandts, J. F. and Lehrer, S. S.: Effects of an interchain disulfide bond on tropomyosin structure, FEBSLett., 91 (1978) 206-208.

87 Williams, D. L. Jr. and Swenson, C. A.: Tropomyosin stability: assignment of thermally induced conformational transitions to separate regions of the molecule, Biochemistry, 20 (1981) 3856-3864.

88 Lehman, W., Hatch, V., Korman, V., Rosol, M., Thomas, L., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S. and Craig, R.: Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments, J. Mol. Biol., 302 (2000) 593-606.

89 Lehman, W., Vibert, P. and Craig, R.: Visualization of caldesmon on smooth muscle thin filaments, J.Mol. Biol., 274 (1997) 310-317.

90 Smith, D. A., Maytum, R. and Geeves, M. A.: Cooperative regulation of myosin-actin interactions by a continuous flexible chain. I: Actin-tropomyosin systems, Biophys. J.,

84 (2003) 3155-3167.

91 Morozova, L. A., Gusev, N. B., Shnyrov, V. L. and Permyakov, E. A.: Study of the physico-chemical properties of troponins I and T from the heart and skeletal muscles using protein fluorescence and calorimetry methods, Biokhimiya, 53 (1988) 531-540.

92 Tsalkova, T. N. and Provalov, P. L.: Stability of troponin C, Biochim. Biophys. Acta, 624 (1980) 196-204.

93 Ingraham, R. H. and Swenson, C. A.: Stability of the Ca2+-specific and Ca2+-Mg2+ domains of troponin C. Effect of pH, Eur. J. Biochem., 132 (1983) 85-88.

94 Bogatcheva, N. V. and Gusev, N. B.: Interaction of smooth muscle calponin with phospholipids, FEBS Lett., 371 (1995) 123-126.

Was this article helpful?

0 0
Metabolism Masterclass

Metabolism Masterclass

Are You Sick And Tired Of All The Fat-Burning Tricks And Trends That Just Don’t Deliver? Well, Get Set To Discover The Easy, Safe, Fast, And Permanent Way To Mega-Charge Your Metabolism And Lose Excess Fat Once And For All! This Weight Blasting Method Is Easy AND Natural… And Will Give You The Hot Body And Killer Energy Levels You’ve Been Dreaming Of.

Get My Free Ebook


Post a comment